天圆液压产品中心
基于HyperWorks的汽液压站车喇叭、支架体系振动疲惫说明(2)
| 从试验要求来看,最大振动激励载荷在15~25Hz之间,因此可以通过提高支架悬臂根部刚度来提高一阶模态频率,从而减小共振时动应力水平。利用HyperWorks并结合工程经验经过多次循环迭代分析,得到了如图7所示的改进方案。 改进方案的一阶模态频率从原方案的22.69Hz提高到27.44Hz,模态振型仍为系统的Z向弯曲振动,如图8所示。喇叭、支架系统改进后,根据试验要求,一阶频率落在25~100Hz的频段内,此时加速度激励由4.5g减小到2g,再次对喇叭、支架系统做扫频步长为0.5Hz的频响分析,结果发现在频率27.5Hz时,动应力最大约为149MPa,远小于370MPa,因此喇叭支架改进后不存在低周疲劳问题。同时,计算获得改进后疲劳总损伤值D=0.13,说明喇叭支架也不存在高周疲劳问题。
图7 改进后喇叭支架结构 图8 27.5Hz/2g/Z向激励的动应力云图 6 计算模型的试验验证 针对我们提出的改进方案,进行了第二次振动疲劳试验。喇叭、支架系统没有发生疲劳断裂,也无任何裂纹产生, 此次试验中测得喇叭支架系统响应共振频率为27.8Hz。 阻尼大小的选取对响应有很大的影响,我们在仿真分析中,针对喇叭、支架系统的结构特征通过大量的计算与试验对比来选取合适的等效阻尼,该等效阻尼以结构阻尼的形式来体现。表3是Z向2g加速度激励下,选取不同阻尼值时共振频率的动应力对比。最终通过加速度的相关性分析选取等效结构阻尼G=0.1。 表3 不同阻尼的动应力对比
为了验证仿真分析中接触边界、等效阻尼值的定义是否合适,进行了加速度响应试验测试。试验中,给台架Z向3g的加速度激励,传感器布置在在簧片与喇叭连接螺母上,测得27Hz时的加速度约为10g。图9是仿真分析中不同阻尼对应的螺栓连接中心点的加速度曲线,当等效结构阻尼为0.1时,27Hz的加速度值为98328mm/s2,与试验吻合较好。
图9 加速度响应曲线 7 结论 本文中某车型喇叭、支架系统的断裂主要由结构共振时产生的疲劳问题所致,此外表面加工质量问题也是影响断裂的重要因素。从喇叭、支架系统振动工况的整个使用周期来看,该系统的破坏属于高周疲劳,可以用疲劳累积损伤公式进行损伤计算,但是由于喇叭支架的振动疲劳主要是由共振引起的,因此在做疲劳分析时可以主要关注共振带内的动应力值。 计算分析中还发现,在不同的试验载荷状态下,产生了试验固定边界接触刚度的非线性。因此不同载荷边界条件下,其共振频率也有所不同。同时,在做动力响应分析时要注意选取合适的等效系统阻尼,该阻尼在很大程度上影响着共振点的响应,进而影响到疲劳分析结果的可靠性。 振动疲劳法考虑了构件的动态特性, 疲劳破坏的部位往往都是局部共振中应力较大的部位, 此方法综合考虑结构共振与应力集中的同时作用, 这用准静态法是很难解决的。 8 参考文献 [1]姚起杭,姚军.工程结构的振动疲劳问题.应用力学学报,2006,23(1):12-15. [2]姚起杭,姚军.结构振动疲劳问题的特点与分析方法[J].机械科学与技术,2000,19(增刊):56-58. [3]徐刚,周鋐,陈栋华,魏传峰.轿车后桥疲劳寿命的数字化预测研究[J].汽车技术,2007,4:29-31.(end) ,缸筒 (责任编辑:admin) |
- [ 18-11-06 ]换向阀中位性液压站能特点及应用留意
- [ 18-10-09 ]公制螺纹、BS液压油缸PP螺纹ED密封油
- [ 18-09-11 ]很是具体的液液压站压阀块计划履历总
- [ 18-09-11 ]液压节液压站制技能的革命
- [ 16-09-14 ]联轴珩磨管器选择方法
- [ 16-07-17 ]怎样避免缸筒液压站冲击危害?
- [ 16-07-17 ]液压动力单元液不锈钢缸筒压齿轮泵的
